Q.P. Code: 19HS0831

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year II Semester Supplementary Examinations July-2021 DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS

(Common to CE, EEE, ME, ECE & AGE)

Time: 3 hours

Max. Marks: 60

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1 a Solve $(x+1)\frac{dy}{dx} - y = e^{3x}(x+1)^2$.

6M

b Solve $(D^2 - 3D + 2)y = xe^{3x} + \sin 2x$.

6M

OR

2 a Solve $(D^2 + 4D + 3)y = e^{-x} \sin x + x$.

6M

b Solve $\frac{dy}{dx} + y \tan x = y^2 \sec x$.

6M

UNIT-II

3 a Solve $(D^2 - 2D)y = e^x \sin x$ by the method of variation of parameters.

5M

b Find the current 'i' in the LCR circuit assuming zero initial current and charge 'i', if 7M R = 80 Ohms, L = 20 Henrys, C = 0.01 Farads and E = 100 V.

OR

a Solve $(1+x)^2 \frac{d^2y}{dx^2} - 3(1+x)\frac{dy}{dx} + 4y = x^2 + x + 1$.

7M

b Solve $\frac{dy}{dx} + y = z + e^x$; $\frac{dz}{dx} + z = y + e^x$.

5M

UNIT-III

5 a Solve $\frac{\partial^3 z}{\partial x^2 \partial y} + 18xy^2 + \sin(2x - y) = 0$.

6**M**

b Solve by the method of separation of variables $u_x = 2u_y + u$ where $u(x,0) = 6e^{-3x}$. **6M**

OR

6 a Form the partial differential equation by eliminating the arbitrary functions from 6M $xyz = f(x^2 + y^2 + z^2)$.

b Solve (z - y)p + (x - z)q = y - x

6M

UNIT-IV

7 **a** Find the directional derivative of $2xy + z^2$ at (1, -1, 3) in the direction of i + 2j + 3k. **6M**

b Find $curl(\bar{f})$ if $\bar{f} = grad(x^3 + y^3 + z^3 - 3xyz)$. **6M**

OR

8 **a** For what values of a, b, and c the vector point function $\bar{f} = (x+2y+az)^{P}_{i} + 6M$ $(bx-3y-z)^{P}_{j} + (4x+cy+2z)^{P}_{k}$ is irrotational.

b Prove that $\nabla \times (\bar{f} \times \bar{g}) = \bar{f}(\nabla \cdot \bar{g}) - \bar{g}(\nabla \cdot \bar{f}) + (\bar{g} \cdot \nabla)\bar{f} - (\bar{f} \cdot \nabla)\bar{g}$.

UNIT-V

9 **a** If $\overline{F} = (2xz)^{p} - (x)^{p} + y^{2}^{p} + y^{2}^{p} + y^{2}^{p}$, evaluate $\int_{V} \nabla \cdot \overline{F} dv$ where v is the region bounded by 5M the surfaces $x = 0, x = 2, y = 0, y = 6, z = x^{2}, z = 4$.

b Verify Stoke's theorem for $\overline{F} = (x^2 + y^2)_i^P - (2xy)_j^P$ taken around the rectangle 7M bounded by the lines $x = \pm a$, $y = \pm b$.

OR

- 10 a Evaluate $\int_{s} \overline{F} \cdot \overline{n} \, ds$ where $\overline{F} = (18z)^{P}_{i} (12x)^{P}_{j} + (3y)^{P}_{k}$ and s is the part of the 6M surface of the plane 2x + 3y + 6z = 12 located in the first octant.
 - **b** Using Green's theorem evaluate $\oint_c [(x^2 xy^3)dx + (y^2 2xy)dy]$ where c is a square 6M with vertices (0, 0), (2, 0), (2, 2) and (0, 2).

*** END ***